
Data Structure: Segment Tree

Topics in brief

• What is data structure?

• Why do we need Segment tree?

• Principle of Segment tree

• Properties (Execution time, Space consumed)

• Some Questions

What is Data Structure?

• Efficient way to organize data.

• Can help in performing task efficiently by
reducing the time required.

• As you will see now, the way we organise data
matters a lot! It can reduce minutes to
seconds!

Problem Statement

• You are given an array of n integers (a[0] to a[n-1]).

• You have to answer m queries.

• In each query, you are given two integers, l and r (
0<=l,r<=n-1). Your job is to print the largest number
in the range a[l], a[l+1], a[l+2],…., a[r-1], a[r].

• n is in the order of 10^6

• m is in the order of 10^5.

• Real world data is usually as large as this

30 9 62 2 6 39 22 77 67 51 83 12 19 49 3 99

Let n=16 and the array be as follows.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Index

Array
elements

Problem Statement

Query: 1 3
Result: 62

Query: 5 9
Result: 77

Query: 0 15
Result: 99

Query: 12 12
Result: 19

Simple solution: Naïve approach
• Iterate from l to r and keep track of the maximum number

found.

• Eg. For query 2 7, look at all the numbers from 2 till 7. Easy to
find the max number this way.

• In form of a ‘for’ loop:

int max=array[l];

for(i=l;i<=r;i++)

{

If(array[i]>max)

max=array[i];

}

Though very simple to understand, this method is very time
consuming.

• For each query, we have to look at (r-l+1)
numbers. i.e. we have to perform (r-l+1)
operations.

• n can be as large as 10^6. Therefore, the worst
case is when l=0 and r=999999. 10^6 operations
are required to find the answer in this case.

• As mentioned before, we can have as many as
10^5 queries.

• So, if all queries exhibit the worst case, we have
to perform a total of (10^6) X (10^5) = 10^11
operations.

Analysis of execution time

• On a normal machine with 2.5 Ghz processor,

10^7 or less operations take very less time
(<.1 second)

10^8 operations take about 0.5 - 1 second

10^9 operations take about 3 - 4 seconds.

………..

10^11 operations will take unacceptably long
time!

Principle of Segment tree

• The principle of segment tree is:

• If we have two arrays

{3,5,2} and {6,22,1,6,10}.

• And the maximum integer of these arrays is m1=5 and
m2=22 respectively. Then, the maximum of the array
obtained by combining both these array
{3,5,2,6,22,1,6,10} is MAX(m1,m2)=MAX(5,22)=22.

• i.e. We don’t need to look at the whole combined array
again. We can deduce the maximum of the whole array
just by looking at the maximum of the individual arrays

Segment tree

30 9 62 2 6 39 22 77 67 51 83 12 19 49 3 99

0-1: 30 2-3: 62 4-5: 39 6-7: 77 8-9: 67 10-11:83 12-13: 49 14-15:99

0-3: 62 4-7: 77 8-11: 83 12-15: 99

0-7: 77 8-15: 99

0-15: 99

Observations

• In a segment tree, no matter what the query
is, we will required to look at <= 2 * log2(n)
numbers.

• So, operations required to answer each query
= 2 * log2(10^6) = 40 , in the worst case.

And as there are 10^5 queries, the total
number of operations required in answering
all queries = 10^5 X 40 = 4 X 10^6 (which is
just fine)

• Segment trees consume less time..

• But is the output given by this algorithm
correct??

• There is always a trade off between memory
and time. We can either use less memory or
less time. Not both.

• Segment tree uses less time in exchange for
some more memory.

• Maximum number of nodes in a segment
tree???

• Time required to build??

• Time for each query??

• In this example, the segment tree was
constructed to find MAXIMUM of a range.

• The same can be done to find MINIMUM of a
range.

• Q.- What about finding SUM of a range?

Can they be optimised using Segment Trees??

• SUM of a range queries can be done using
Segment trees. But a much more efficient
approach is possible that that.

Sum of a range query (alternate
approach)

• We have the following array:

7 9 3 2 6 15 10 17 2 4 3 1 11 1 0 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Query: 1 3
Result: 14

Query: 7 9
Result: 23

Query: 0 15
Result: 96

Query: 9 9
Result: 4

Index

Array
elements

7 9 3 2 6 15 10 17 2 4 3 1 11 1 0 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7 16 19 21 27 42 52 69 71 75 78 79 90 91 91 96

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Index

Array
elements

Index

Array
elements

Array 1:

We construct this new Array 2:

Array2[i]=summation(j=0 to j=i) (array1[j])

• Now to answer each query we need only one
step:

For each query: l r , the answer is

array2[r]-array2[l-1]

Eg. For the query 4 8, the answer is

array2[8]-array2[3]=71-21=50

For the query 6 15, the answer is

array[15]-array[5]=96-42=54

• So each query is answered in just 1 operation
as opposed to log2(n) operations in case of
segment tree.

• This is known as dynamic programming.

• What if some array element needs to be
changed??

• In case of the old Naïve approach, if we want
to change any array element, it can be done in
only one operation.

• But, in segment trees, changing of an array
element required log2(n) steps again.

• Even though updation is slower in Segment
trees, still Query answering is so fast that it
doesn’t matter that updation is a little slow.

• Visit www.codeaccepted.wordpress.com for
more algorithms that are used in competitive
programming.

http://www.codeaccepted.wordpress.com/

